LOGO
pl en

Influence of selected individual clinical factors on reproducibility of radiation fields in patients treated due to gynecologic cancers

Bogusław Lindner1, Ryszard Krynicki2, Marta Olszyna-Serementa1, Agnieszka Nalewczyńska2, Anna Zawadzka3, Katarzyna Bednarczyk3, Piotr Czuchraniuk1

Affiliacja i adres do korespondencji
CURR. GYNECOL. ONCOL. 2014, 12 (2), p. 115–124
DOI: 10.15557/CGO.2014.0011
Streszczenie

Introduction: Accurate reproducibility of the radiation field in all stages of radiotherapy is the basic condition for curing cancer permanently while preserving vital surrounding tissues and organs. The progress in information technology has made it possible to replace time-consuming and less accurate portal imaging that uses radiograms with electronic systems for recording and processing images of the radiation beam. Such devices detect possible geometric errors more effectively and enable their verification even during a single radiation fraction. The fact that the precision and individualization of contemporary radiotherapy is aimed at as well as new technical possibilities motivated the authors to search for individual patient-related factors that influence the reproducibility of radiation fields in individual radiotherapy sessions. Aim: The aim of the paper was to assess the influence of selected individual clinical factors on the reproducibility of the radiation field in patients treated due to gynecologic cancers. Material: The material comprised 88 patients with cervical and endometrial cancers in FIGO stages I, II and III, treated in the Department of Teleradiotherapy of Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology in Warsaw, Poland. The radiotherapies conducted were radical, primary and adjuvant following previous surgical treatment. Method: Patients received irradiation according to the treatment plans with 6 and 15 MeV X-ray photons with a total dose of 45–60 Gy, 1.5–2.5 Gy in 12–39 (mean 25) fractions. In order to compare patient set-up accuracy with the reference positioning stored in the Vision system, verification images were made during subsequent radiation fractions with the use of electronic portal imaging system from the PA 0° and lateral 90° directions of radiation beams. Differences in relation to the reference images in three directions were compared and entered into tables. The reaction threshold was assumed when the differences between the simulator images and portal images in any of the examined directions were >7 mm. Then, following an error analysis, set-up was verified and corrected simultaneously (online). The size of displacement with respect to the reference image and the mean displacement value were specified in every patient for each of the three directions. For the purposes of the statistical analysis, a displacement vector was determined that expressed total displacement of a patient during radiotherapy with respect to the reference images. A description of the studied group of patients based on clinical features was presented in the table. It includes the performance status, body mass index, diagnosis, stage of the disease, data concerning combination treatment with radiotherapy, including previous surgical treatment and chemotherapy, as well as aggravation of early radiation reactions of the urinary bladder and intestine. The authors analyzed the influence of the selected individual clinical factors on the reproducibility of the radiation field, which was expressed with the displacement vector. The chi-square test of dependence was used to assess correlations between the value of the displacement vector and the aforementioned clinical and pathological features. The level of statistical significance of p = 0.05 referred to all comparisons. Results: The analysis involved 382 portal images that verified patient set-up, based on which a total of 1528 measurements were performed according to the above mentioned principles. For each analyzed patient, the value of the displacement vector was calculated. The mean value for all patients was 0.44 (0.02–1.82, standard deviation 0.27). The chi-square test of dependence revealed a statistically significant influence of obesity expressed as the body mass index (BMI) (p = 0.003), presence of early intestinal radiation reactions (p = 0.034) and previous surgical treatment (p = 0.046) on worse reproducibility of radiation fields expressed as the value of the displacement vector. Conclusions: Obesity expressed as the body mass index (BMI) ≥30.0, presence of acute intestinal radiation reactions during radiotherapy and surgical treatment conducted at the first stage of treatment deteriorate the reproducibility of the radiation field in a statistically significant way in patients treated due to gynecologic cancers.

Słowa kluczowe
portal imaging, set-up verification, geometric errors, quality control, pelvic radiotherapy